Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 119: 105582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467173

RESUMO

Listeria monocytogenes is an important human pathogen with a high mortality rate. Consumption of contaminated ready-to-eat food is the main mode of transmission to humans. Disinfectant-tolerant L. monocytogenes have emerged, which are believed to have increased persistence potential. Elucidating the mechanisms of L. monocytogenes disinfectant tolerance has been the focus of previous studies using pure cultures. A limitation of such approach is the difficulty to identify strains with reduced susceptibility due to inter-strain variation and the need to screen large numbers of strains and genes. In this study, we applied a novel metagenomic approach to detect genes associated with disinfectant tolerance in mixed L. monocytogenes planktonic communities. Two communities, consisting of 71 and 80 isolates each, were treated with the food industry disinfectants benzalkonium chloride (BC, 1.75 mg/L) or peracetic acid (PAA, 38 mg/L). The communities were subjected to metagenomic sequencing and differences in individual gene abundances between biocide-free control communities and biocide-treated communities were determined. A significant increase in the abundance of Listeria phage-associated genes was observed in both communities after treatment, suggesting that prophage carriage could lead to an increased disinfectant tolerance in mixed L. monocytogenes planktonic communities. In contrast, a significant decrease in the abundance of a high-copy emrC-harbouring plasmid pLmN12-0935 was observed in both communities after treatment. In PAA-treated community, a putative ABC transporter previously found to be necessary for L. monocytogenes resistance to antimicrobial agents and virulence, was among the genes with the highest weight for differentiating treated from control samples. The undertaken metagenomic approach in this study can be applied to identify genes associated with increased tolerance to other antimicrobials in mixed bacterial communities.


Assuntos
Desinfetantes , Listeria monocytogenes , Listeria , Humanos , Desinfetantes/farmacologia , Compostos de Benzalcônio/farmacologia , Indústria Alimentícia , Farmacorresistência Bacteriana/genética , Microbiologia de Alimentos
2.
Antibiotics (Basel) ; 12(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887230

RESUMO

The potential risk to human and animal health provides a rationale for research on methicillin-resistant staphylococci (MRS) and mammaliicocci (MRM) in dairy herds. Here, we aimed to estimate their occurrence in the bulk tank milk (BTM) samples collected in 2019-2021 from 283 bovine dairy farms in the Belgrade district. We used whole-genome sequencing to characterize the obtained isolates and assess their genetic relatedness. A total of 70 MRS/MRM were recovered, most frequently Staphylococcus haemolyticus and Mammaliicoccus sciuri. Five clusters of 2-4 genetically related isolates were identified and epidemiological data indicated transmission through, e.g., farm visits by personnel or milk collection trucks. Most MRSA isolates belonged to the typical livestock-associated lineage ST398-t034. One MRSA isolate (ST152-t355) harbored the PVL-encoding genes. Since MRS/MRM isolates obtained in this study frequently harbored genes conferring multidrug resistance (MDR), this argues for their role as reservoirs for the spread of antimicrobial resistance genes. The pipeline milking system and total bacterial count >100,000 CFU/mL were significantly associated with higher occurrences of MRS/MRM. Our study confirms that BTM can be a zoonotic source of MRS, including MDR strains. This highlights the urgent need for good agricultural practices and the continuous monitoring of MRS/MRM in dairy farms.

3.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37877984

RESUMO

During the 2021 European Food Safety Authority coordinated harmonized monitoring of antimicrobial resistance in Campylobacter species in Slovenia, five Campylobacter-like strains were cultured from caeca of a total of 104 domestic pigs that could not be identified using the standard-prescribed biochemical tests or MALDI-TOF MS. The isolates were obtained using the standard ISO 10272 procedure for the isolation of thermotolerant Campylobacter with prolonged cultivation time. Small Campylobacter-like colonies were observed on mCCDA and CASA agar plates after 2-4 days of incubation; dark-field microscopy revealed relatively big spirilli-shaped bacteria exhibiting characteristic Campylobacter-like motility. The cells were 1.5-3 µm long and 0.5-0.7 µm wide, Gram-negative, oxidase-positive and catalase-positive. MALDI-TOF mass spectra were distinctive and consistent, but with low MALDI-TOF MS log scores and the closest matches being those of Campylobacter hyointestinalis and Campylobacter fetus. All five strains underwent whole-genome sequencing. Analysis of 16S rRNA gene sequences revealed that the isolates were most similar (98.3-98.4 % identity) to Campylobacter lanienae. Pairwise average nucleotide identity (ANI) values revealed that the five studied strains shared pairwise ANI of 96.2-96.5 % but were clearly distinct from the previously described Campylobacter species (ANI ≤72.8 %). The core genome-based phylogeny confirmed that the new strains form a distinct and well-supported clade within the genus Campylobacter. The conducted polyphasic taxonomic analysis confirmed that the five strains represent a novel Campylobacter species for which the name Campylobacter magnus sp. nov. is suggested, with strain 46386T (=DSM 115534T=CCUG 76865T) as the type strain.


Assuntos
Campylobacter , Sus scrofa , Suínos , Animais , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Campylobacter/genética , Nucleotídeos
4.
Vet Microbiol ; 282: 109751, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104938

RESUMO

Brucella suis commonly infects swine but occasionally also other animal species and humans. Wild boars are the most important reservoir of B. suis biovar 2, continually infecting susceptible hosts through close contact. Nevertheless, the genetic diversity of B. suis in wildlife remains understudied. Here, we typed 17 Slovenian B. suis biovar 2 isolates obtained in 2017-2019 from wild boars (n = 16) and a hare (n = 1) using whole-genome sequencing (WGS). To assess the global phylogenetic diversity of B. suis, we compared them to 126 publicly available B. suis genomes. All Slovenian isolates fell within the biovar 2 lineage, confirming the previous multiplex PCR typing results. According to MLST-21, the wild boar isolates were of sequence types (STs) ST16 (n = 8) and ST153 (n = 8); the maximum genetic distance between isolates of the same ST was 28 wgMLST alleles. The ST153 isolates were restricted to the Slovenian-Croatian border and clustered together with the Croatian ST153 isolates from swine, indicating cross-border transmission of B. suis ST153 strain. The hare isolate was of ST40 and was genetically distant (≥ 489 alleles) from the wild boar isolates. The genome-wide phylogeny clearly separated different B. suis biovars. The present study is the first report on the population structure of B. suis in wildlife in Slovenia and shows that the Slovenian B. suis population is genetically heterogeneous. At the species level, B. suis biovars are clearly separated in the WGS-based phylogenetic tree and can therefore be reliably predicted using WGS.


Assuntos
Brucella suis , Brucelose , Lebres , Doenças dos Suínos , Humanos , Suínos , Animais , Animais Selvagens , Filogeografia , Brucelose/epidemiologia , Brucelose/veterinária , Filogenia , Tipagem de Sequências Multilocus/veterinária , Lebres/genética , Sus scrofa , Doenças dos Suínos/epidemiologia
5.
Front Microbiol ; 14: 1289182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192290

RESUMO

Introduction: Shortly before the mass mortality event of the noble pen shell (Pinna nobilis) population in the south-eastern Adriatic coast, two rapidly growing Mycobacterium strains CVI_P3T (DSM 114013 T, ATCC TSD-295 T) and CVI_P4 were obtained from the organs of individual mollusks during the regular health status monitoring. Methods: The strains were identified as members of the genus Mycobacterium using basic phenotypic characteristics, genus-specific PCR assays targeting the hsp65 and 16S rRNA genes and the commercial hybridization kit GenoType Mycobacterium CM (Hain Lifescience, Germany). MALDI-TOF mass spectrometry did not provide reliable identification using the Bruker Biotyper Database. Results and discussion: Genome-wide phylogeny and average nucleotide identity (ANI) values confirmed that the studied strains are clearly differentiated from their closest phylogenetic relative Mycobacterium aromaticivorans and other validly published Mycobacterium species (ANI ≤ 85.0%). The type strain CVI_P3T was further characterized by a polyphasic approach using both phenotypic and genotypic methods. Based on the phenotypic, chemotaxonomic and phylogenetic results, we conclude that strains CVI_P3T and CVI_P4 represent a novel species, for which the name Mycobacterium pinniadriaticum sp. nov. is proposed.

6.
Antibiotics (Basel) ; 11(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358187

RESUMO

Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.

7.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36367514

RESUMO

Seven Helicobacter-like isolates were cultured from caecal contents of 100 domestic pigs (Sus scrofa domesticus) sampled as part of the EFSA-coordinated harmonized monitoring of antimicrobial resistance in Campylobacter sp. in 2015. The bacteria were isolated using the standard ISO 10272 procedure for the isolation of thermotolerant Campylobacter with extended incubation time and formed small, grey, moist and flat colonies with a metallic sheen (small Campylobacter-like colonies) on modified Charcoal-Cefoperazone-Deoxycholate Agar (mCCDA) and Skirow agar plates. Morphologically, the bacterial cells were spirilli-shaped and highly motile, 1-2 µm long and ≤0.5 µm wide, Gram-negative, oxidase-positive and catalase-positive. They could not be identified using the standard-prescribed biochemical tests and had uniform, unique and reproducible MALDI-TOF mass spectra that most closely matched those of Helicobacter pullorum. Three strains (11154-15T, 14348-15 and 16470-15) underwent whole-genome sequencing. Analysis of 16S rRNA gene sequences revealed a high similarity (≥99.8 % identity) to Helicobacter canadensis. Pairwise average nucleotide identity (ANI) values revealed that the three studied strains were closely related (ANI ≥98.9 %), but distinct from the previously described Helicobacter species (ANI ≤90.6 %). The core genome-based phylogeny confirmed that the new strains form a distinct clade most closely related to H. canadensis. The conducted polyphasic taxonomic analysis confirmed that the three strains represent a novel Helicobacter species for which the name Helicobacter colisuis sp. nov. is suggested, with strain 11154-15T (= DSM 113688T = CCUG 76053T) as the type strain.


Assuntos
Campylobacter , Helicobacter , Animais , Suínos , RNA Ribossômico 16S/genética , Sus scrofa , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ágar , Filogenia , Análise de Sequência de DNA , Composição de Bases , Ácidos Graxos/química
8.
Microbiol Spectr ; 10(6): e0248122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36250854

RESUMO

Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar found in broilers and broiler meat and is among the top five serovars responsible for human infections in Europe. In 2008, a multidrug-resistant S. Infantis isolate emerged in Israel with a mosaic megaplasmid named pESI, associated with increased virulence, biofilm formation, and multidrug resistance. Since then, S. Infantis clones with pESI-like plasmids have been reported worldwide, replacing pESI-free clones. Here, we typed 161 S. Infantis isolates of poultry (n = 133) and human clinical (n = 28) origin using whole-genome sequencing. The isolates were collected between 2007 and 2021. In addition, we performed PacBio/Illumina sequencing for two representative pESI-like plasmids and compared them with publicly available sequences. All isolates belonged to sequence type 32 (ST32), except for one isolate that represented a novel single-locus variant of ST32. Core genome MLST (cgMLST) analysis revealed 14 clusters of genetically closely related isolates, of which four suggested broiler-to-human transmission of S. Infantis. pESI-like plasmids were present in 148/161 (91.9%) isolates; all were highly similar to the publicly available pESI-like sequences but lacked extended-spectrum beta-lactamase (ESBL) genes. PacBio/Illumina hybrid assembly allowed the reconstruction of two novel complete pESI variants. The present study revealed that the multidrug-resistant, pESI-positive S. Infantis clone became the predominant S. Infantis clone in Slovenian broilers and humans during the last decade. Continued surveillance of resistant S. Infantis clones along the food chain is needed to guide public health efforts. IMPORTANCE Salmonella Infantis clones with pESI-like plasmids harboring several virulence and resistance genes have been reported worldwide. In the present study, we compared the population structure of 161 Salmonella Infantis isolates obtained from humans and broilers in Slovenia from 2007 to 2021. Whole-genome sequencing showed that most human isolates clustered apart from broiler isolates, suggesting an alternative source of infection. Most isolates were multidrug resistant due to the presence of pESI-like plasmids, of which two variants (pS89 and pS19) were fully reconstructed using long-read sequencing. Both exhibited high similarity with the original Israeli pESI plasmid and German p2747 plasmid. The prototype plasmid pS89 harbored the typical pESI-associated resistance genes aadA1, qacEΔ1, sul1, and tet(A), which were absent in the truncated plasmid pS19.


Assuntos
Galinhas , Salmonella enterica , Humanos , Animais , Sorogrupo , Eslovênia/epidemiologia , Tipagem de Sequências Multilocus , Salmonella/genética , Salmonella enterica/genética , Plasmídeos/genética , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
9.
Sci Data ; 9(1): 190, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484273

RESUMO

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Assuntos
Doenças Transmitidas por Alimentos , Listeria monocytogenes , Listeriose , Animais , Ecossistema , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/microbiologia
11.
Insects ; 12(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34821836

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybees. P. larvae spore counts in bee-related samples correlate with the presence of AFB symptoms and may, therefore, be used to identify at-risk colonies. Here, we constructed a TaqMan-based real-time PCR (qPCR) assay targeting a single-copy chromosomal metalloproteinase gene for reliable quantification of P. larvae. The assay was calibrated using digital PCR (dPCR) to allow absolute quantification of P. larvae spores in honey and hive debris samples. The limits of detection and quantification were 8 and 58 spores/g for honey and 188 and 707 spores/mL for hive debris, respectively. To assess the association between AFB clinical symptoms and spore counts, we quantified spores in honey and hive debris samples originating from honeybee colonies with known severity of clinical symptoms. Spore counts in AFB-positive colonies were significantly higher than those in asymptomatic colonies but did not differ significantly with regard to the severity of clinical symptoms. For honey, the average spore germination rate was 0.52% (range = 0.04-6.05%), indicating poor and inconsistent in vitro germination. The newly developed qPCR assay allows reliable detection and quantification of P. larvae in honey and hive debris samples but can also be extended to other sample types.

12.
Vet Microbiol ; 263: 109282, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34785475

RESUMO

Salmonella enterica serovar Choleraesuis is a host-adapted serovar that causes serious infections in domestic pigs and wild boars. Here, we investigated an outbreak of salmonellosis in domestic pigs in Slovenia, 2018-2019. To assess the outbreak, 18 isolates from domestic pigs, wild boars, wild boar meat and a human patient underwent whole-genome sequencing (WGS). All isolates were of sequence type (ST) 145 and harbored no antimicrobial resistance genes or AMR-associated mutations. A single transmission cluster (≤ 6 alleles) of spatially (< 100 km) and temporally linked isolates was observed, comprising isolates of pig (n = 9), wild boar (n = 2) and human (n = 1) origin, and suggesting possible interspecies transmission. In all outbreak-related animal cases, septicemic salmonellosis was observed, accompanied in some cases by enteric symptoms. All pig isolates were linked to a single intensive breeding farm that distributed growers to small family farms. The same transport vehicles were used to distribute growers to family farms and also to transport livestock between neighboring countries. Both isolates that originated from the imported wild boar meat were genetically distant (≥ 122 alleles) from the outbreak cluster. The present results indicate the importance of screening domestic pigs and proper disinfection of transport vehicles to control the spread of S. Choleraesuis.


Assuntos
Zoonoses Bacterianas , Surtos de Doenças , Genoma Bacteriano , Salmonelose Animal , Salmonella enterica , Animais , Zoonoses Bacterianas/epidemiologia , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Genoma Bacteriano/genética , Genômica , Humanos , Salmonelose Animal/epidemiologia , Salmonella enterica/genética , Sus scrofa , Suínos
13.
Antibiotics (Basel) ; 10(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070191

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in humans, but its importance in small animal practice is increasing. Here, we present a case of feline otitis externa (OE) caused by MRSA; both hemolytic and nonhemolytic variants with a stable phenotype were recovered from the external auditory canal after infection was detected by routine otoscopy. One isolate per variant underwent antimicrobial susceptibility testing (AST) by broth microdilution method, conventional spa typing and whole-genome sequencing (WGS). The results showed that both variants were genetically related and were of sequence type (ST) 1327, SCCmec type IV and spa type t005. AST and WGS showed that both isolates were resistant to ß-lactams and sensitive to all tested non-ß-lactam antibiotics. Both isolates were pvl-negative, but encoded several other virulence genes (aur, hlgABC, sak, scn, seg, sei, sem, sen, seo and seu). Genetic background of the mixed hemolytic phenotype was not identified; no differences in the agr locus or other regulatory regions were detected. Three single-nucleotide polymorphisms were identified but could not be associated with hemolysis. This well-documented case of MRSA infection in companion animals adds to the reports of MRSA infections with a mixed hemolytic phenotype.

14.
Vet Microbiol ; 258: 109119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023637

RESUMO

Staphylococcus pseudintermedius is a common cause of skin and soft tissue infections in dogs but can also cause infections in cats and humans. The frequency of methicillin-resistant S. pseudintermedius (MRSP) strains is increasing worldwide. Here, we obtained 43 MRSP isolates from dogs (n = 41), one cat (n = 1) and the small animal clinic environment (n = 1) in Slovenia from the period 2008-2018, which underwent whole-genome sequencing (WGS) and antimicrobial susceptibility testing. Five sequence types (STs) were identified, with ST71 (32/43) and ST551 (8/43) being the predominant. In Slovenia, ST551 was first detected in 2016, whereas a decrease in the frequency of ST71 was observed after 2015. All isolates were multidrug-resistant and most antimicrobial-resistant phenotypes could be linked to acquisition of the corresponding resistance genes or gene mutations. Core-genome multilocus sequence typing (cgMLST) revealed several potential MRSP transmission routes: (i) between two veterinary clinics by a single MRSP-positive dog, (ii) between the environment of a veterinary clinic and a dog, and (iii) between a canine and a feline patient through the contaminated environment of a veterinary clinic. Of the six dogs that were additionally sampled from 14 days to five months after the initial sampling, each harbored the same MRSP strain, suggesting a limited within-host diversity of MRSP in symptomatic dogs. The present results highlight the importance of MRSP-positive dogs in the spread of veterinary care-associated MRSP infections and call for the implementation of strict control measures to reduce MRSP contamination in veterinary clinic environments originating from animal-contact surfaces.


Assuntos
Doenças do Gato/microbiologia , Doenças do Cão/microbiologia , Resistência a Meticilina , Infecções Estafilocócicas/veterinária , Staphylococcus/efeitos dos fármacos , Animais , Doenças do Gato/transmissão , Gatos , Doenças do Cão/transmissão , Cães , Hospitais Veterinários , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/transmissão , Staphylococcus/genética
15.
Insects ; 12(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921572

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a fatal disease of honeybee brood. Here, we obtained 506 P. larvae isolates originating from honey or brood samples and from different geographic regions of Slovenia in the period 2017-2019. In the first part of the study, we conducted ERIC-PCR typing to assess the frequency of ERIC types in Slovenia. Capillary electrophoresis was used for the analysis of ERIC patterns, revealing good separation efficiency and enabling easy lane-to-lane comparisons. ERIC II was the predominant type (70.2%), followed by ERIC I (29.8%); two slightly altered ERIC I banding patterns were observed but were not considered relevant for the discrimination of ERIC types. No evident spatiotemporal clustering of ERIC types was observed. To assess the clonality of the outbreak-related P. larvae ERIC I isolates, 59 isolates of this type underwent whole-genome sequencing (WGS). Whole-genome multilocus sequence typing (wgMLST) revealed seven ERIC I-ST2 outbreak clusters (≤35 allele differences) with the median intra-outbreak diversity ranging from 7 to 27 allele differences. In all seven clusters, the transmission of P. larvae outbreak clone within a 3-km radius (AFB zone) was observed, which could be explained by the activity of honeybees. In three clusters, the transmission of the outbreak clone between geographically distant apiaries was revealed, which could be explained by the activities of beekeepers such as migratory beekeeping and trading of bee colonies. The present findings reinforce the importance of beekeeping activities in the transmission of P. larvae. WGS should be used as a reference typing method for the detection of P. larvae transmission clusters.

16.
Front Vet Sci ; 8: 582677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718463

RESUMO

Paenibacillus larvae causes the American foulbrood (AFB), a highly contagious and devastating disease of honeybees. Whole-genome sequencing (WGS) has been increasingly used in bacterial pathogen typing, but rarely applied to study the epidemiology of P. larvae. To this end, we used 125 P. larvae genomes representative of a species-wide diversity to construct a stable whole-genome multilocus sequence typing (wgMLST) scheme consisting of 5745 loci. A total of 51 P. larvae isolates originating from AFB outbreaks in Slovenia were used to assess the epidemiological applicability of the developed wgMLST scheme. In addition, wgMLST was compared with the core-genome MLST (cgMLST) and whole-genome single nucleotide polymorphism (wgSNP) analyses. All three approaches successfully identified clusters of outbreak-associated strains, which were clearly separated from the epidemiologically unlinked isolates. High levels of backward comparability of WGS-based analyses with conventional typing methods (ERIC-PCR and MLST) were revealed; however, both conventional methods lacked sufficient discriminatory power to separate the outbreak clusters. The developed wgMLST scheme provides an improved understanding of the intra- and inter-outbreak genetic diversity of P. larvae and represents an important progress in unraveling the genomic epidemiology of this important honeybee pathogen.

17.
Transbound Emerg Dis ; 68(2): 789-801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32687685

RESUMO

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) represents a concern in both human and veterinary medicine. The aim of this study was to investigate potential LA-MRSA transmission between animals and humans in rural settings. To this aim, a study was designed to include 14 farms in Slovenia, which were selected on the basis of a farmer (initial patient) with confirmed LA-MRSA infection and regular animal contacts. On all farms, the initial patients, their household members, animals and barn environment were analysed for the presence of LA-MRSA. In addition, the epidemiologically linked hospital-related LA-MRSA isolates were included to investigate possible nosocomial transmissions. On five farms, LA-MRSA was discovered both in animals and in humans. In total, 49 LA-MRSA isolates of different origins underwent whole-genome sequencing, antimicrobial susceptibility testing and spa typing. All 49 isolates belonged to the sequence type 398 (ST398), spa types t011 and t034, and harboured staphylococcal chromosomal cassette mec Vc. High levels of concordance between resistance phenotypes and genotypes were observed. No transmission pairs between animals and initial patients were discovered. However, several isolates originating from farm animals and other household members formed clusters with pairwise distances of ≤14 single nucleotide polymorphisms (SNPs), indicating recent transmission events. In addition, three closely related isolates (0 SNP) form hospitalized patients were observed, indicating a possible nosocomial transmission. Two hospital-related isolates harboured the immune evasion cluster genes, which are associated with adaptation to the human host; however, these two isolates differed in >30 SNPs from the remaining isolates. Characteristics of LA-MRSA from Slovenia reflect those observed previously in other European studies. Immune evasion cluster-positive LA-MRSA ST398 suggests its re-adaptation to the human host and calls for a closer monitoring of such emerging LA-MRSA lineages, in addition to monitoring and preventing the introduction of LA-MRSA from farms to hospitals where transmission is highly plausible.


Assuntos
Fazendeiros , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas/veterinária , Zoonoses/microbiologia , Animais , Fazendas , Humanos , Eslovênia/epidemiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Sequenciamento Completo do Genoma/veterinária
18.
Int J Syst Evol Microbiol ; 70(4): 2395-2404, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32068523

RESUMO

Six Helicobacter-like isolates were recovered from 15 gastric mucosa samples of red foxes (Vulpes vulpes) shot by hunters in the surroundings of Ljubljana, Slovenia. Gram-negative, tightly coiled, intensely motile, 7-15 µm long and ≤1 µm wide bacteria grew on the biphasic blood agar plates. By using a genus-specific polymerase chain reaction (PCR), all isolates were confirmed as Helicobacter sp. and subsequently subjected to whole-genome sequencing (WGS). Five isolates showed a genome-wide average nucleotide identity (ANI) value of <95 % to the previously described Helicobacter species and one isolate was classified as Helicobacter felis. In the five unidentified isolates, the 16S rRNA gene sequence similarity to the type strains of all Helicobacter species ranged from 98.6 to 98.9 %. Their taxonomic status was established using a polyphasic taxonomic approach comprising the core genome-based phylogeny, morphological and phenotypic characteristics, including an analysis of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectra. Phylogeny revealed the existence of three novel and well-supported clusters, with Helicobacter bizzozeronii and Helicobacter baculiformis being the most closely related species. The isolates also differed from the previously described species in their MALDI-TOF profiles and some biochemical characteristics. In conclusion, the data presented herein indicate that the obtained isolates, excluding H. felis isolate, represent three novel Helicobacter species, for which the names Helicobacter labacensis sp. nov., Helicobacter mehlei sp. nov., and Helicobacter vulpis sp. nov. are proposed, with isolates L9T (=DSM 108823T=CRBIP 111719T), L15T (=DSM 108730T=CCUG 72910T) and L2T (=DSM 108727T=CCUG 72909T) as type strains, respectively.


Assuntos
Raposas/microbiologia , Mucosa Gástrica/microbiologia , Helicobacter/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Helicobacter/isolamento & purificação , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Eslovênia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sequenciamento Completo do Genoma
19.
Infect Genet Evol ; 77: 104047, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629888

RESUMO

Listeria monocytogenes is the causative agent of listeriosis, a serious disease affecting both humans and animals. While listeriosis outbreaks in humans are commonly investigated in detail, routine typing of L. monocytogenes is generally not performed in animal outbreaks. Here, seven presumable listeriosis outbreaks in small ruminants were retrospectively identified based on the pulsed-field gel electrophoresis (PFGE) profiles. Outbreaks were further characterised using three different analytical approaches based on the whole-genome sequencing (WGS) data: core-genome multilocus sequence typing (cgMLST), whole-genome MLST (wgMLST) and whole-genome single nucleotide polymorphism (wgSNP) typing. A monoclonal pattern of all seven outbreaks was identified using all three approaches, indicating common-source outbreaks. The outbreak strains belonged to sequence types (STs) 1 (n = 3), ST18 (n = 1), ST21 (n = 2) and ST184 (n = 1). Two epidemiologically linked ST1 outbreaks with indistinguishable PFGE profiles showed a polyphyletic nature and differed in >78 SNPs; thus, they were classified as separate outbreaks according to WGS. In ST184, the outbreak strain was also found in faeces of apparently healthy ruminants, silage and water collected from the trough, which were the most likely source(s) of infection. The outbreak-associated isolates differed in 0-7 cgMLST alleles, 0-12 wgMLST alleles and 1-13 SNPs. The minimum genetic diversity between outbreak-associated isolates and epidemiologically unrelated isolates of the same ST was low in all analysed cases, approaching the maximum diversity within the outbreak cluster. The results suggest that a fixed threshold to define the outbreak cluster should only be considered as a guide and highlight the role of epidemiological data for outbreak confirmation. The identified cgMLST clusters may be further investigated by wgMLST and/or wgSNP typing to increase confidence during investigations of outbreaks caused by highly clonal L. monocytogenes groups. This study gives an overview of the inter- and intra-outbreak genetic diversity of L. monocytogenes strains involved in animal outbreaks, hence improving their investigation.


Assuntos
Surtos de Doenças/veterinária , Listeria monocytogenes/classificação , Listeriose/epidemiologia , Ruminantes/microbiologia , Sequenciamento Completo do Genoma/métodos , Animais , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Evolução Molecular , Microbiologia de Alimentos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Listeriose/veterinária , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos
20.
BMC Microbiol ; 19(1): 299, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31849320

RESUMO

BACKGROUND: Listeria monocytogenes is the causative agent of listeriosis, a serious disease affecting both animals and humans. Here, multilocus sequence typing (MLST) was used to characterize the genetic diversity of Listeria monocytogenes strains isolated from the natural environment and animal clinical cases in Europe. The prevalence of clonal complexes (CCs) obtained was compared according to (i) the origin of isolation - clinical cases vs. natural environment - and (ii) the clinical form of animal listeriosis - rhombencephalitis vs. abortion. To this aim, two datasets were constructed. The clinical dataset consisted of 350 animal clinical isolates originating from France and Slovenia and supplemented with isolates from Switzerland and Great Britain. The natural environment dataset consisted of 253 isolates from the natural environment originating from Slovenia and supplemented with isolates from nine other European countries. RESULTS: For the clinical cases, CC1, CC4-CC217 and CC412 were the most prevalent in rhombencephalitis and CC1, CC37 and CC4-CC217 in abortion. The hypervirulent CC1 and CC4-CC217 prevailed in both datasets. These results indicated that livestock is constantly exposed to hypervirulent CCs. CC1 was significantly associated with a clinical origin, whereas CC9, CC29 and CC14 were associated with the natural environment. CC1 was predominant among rhombencephalitis cases both in cattle and small ruminants, and its prevalence did not differ significantly between these two groups. A novel association of CC37 and CC6 with abortion cases was revealed. CONCLUSIONS: Here, we show that CC1 and CC4-CC217 are prevalent in isolates of environmental and animal clinical origin, suggesting that ruminants are frequently exposed to hypervirulent CCs. The presence of CC4 in two mastitis cases calls for further attention due to direct threat to the consumer. We showed several associations between CCs and the origin of isolation or clinical form of listeriosis, e.g. CC37 and CC6 with abortion. This study improves our understanding of the population structure of L. monocytogenes isolates from the natural environment and animal clinical cases. Moreover, it provides a basis for future studies aiming to determine the underlying mechanisms of phenotypic traits of interest.


Assuntos
Aborto Animal/microbiologia , Microbiologia Ambiental , Variação Genética , Encefalite Infecciosa/veterinária , Listeria monocytogenes/genética , Listeriose/veterinária , Aborto Animal/epidemiologia , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Europa (Continente)/epidemiologia , Feminino , Genótipo , Encefalite Infecciosa/epidemiologia , Encefalite Infecciosa/microbiologia , Listeria monocytogenes/classificação , Listeria monocytogenes/patogenicidade , Listeriose/epidemiologia , Listeriose/microbiologia , Tipagem de Sequências Multilocus , Fenótipo , Prevalência , Ruminantes/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...